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Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

		  5	  4	 1	 0
1	 Let A = (	–3	 –2) and I = (	0	 1 )
	 (i)	 Verify that A2 = 3A – 2I	 [4]

	 (ii)	 Hence, or otherwise, express the matrix A–1 in the form αA + βI, where α, β are real 
numbers.	 [3]

2	 A system of linear equations is given by 

2x + (a – 1)y – z = 0
(a + 2)x + 3y = 0

2x + 3y + (a + 1)z = 0

	 Find the values of a for which there are solutions other than  x = y = z = 0	 [5]
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		  	 1	 3		 0	 4	
3	 (a)	 The matrices M, N are given by M = (	2	 –1	) and N = (	–2	 1	)
		  The matrix S represents the combined effect of the transformation represented by M 

followed by the transformation represented by N

		  (i)	 Find the matrix S	 [3]

		  A rectangle R is mapped to a new shape Q under the transformation represented by S

		  (ii)	 If the area of R is 3 cm2, find the area of Q.	 [3]

		  	 3	 –1	  
	 (b)	 The matrix P = (	0	 1	) represents a linear transformation of the x–y plane.

		  Find the equation of the straight line through the origin, each of whose points is  
invariant under this transformation.	 [5]

		  		  11	 2	 8	
4	 The matrix M =	 	 2	 2	 –10	
		  	

(
	 8	 –10	 5	

)
		  		  1				    2 
	 (i)	 Given that  		  –2		 and		  –1		 are eigenvectors of M, find the corresponding
		  	

(
	–2	

)
		

(
	 2	

)
			 

		  eigenvalues. 										         [5]

	 (ii)	 Given that the third eigenvalue is 9, find a corresponding unit eigenvector.	 [6]

	 (iii)	If U is a 3 × 3 matrix such that  UT MU = D, where D is a diagonal matrix,  
write down a possible matrix U and the corresponding matrix D	 [3]
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5	 Two circles, C1 and C2, as shown in Fig. 1 below, have a common chord, PQ, whose 
 

equation is 4x + 3y = 36

y
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Q

Fig. 1

	 (i)	 Given that the equation of circle C1 is

		  x2 + y2 – 20x – 14y + 99 = 0

	 	 find the coordinates of P and Q.	 [6]

	 PQ is a diameter of the circle C2

	 (ii)	 Show that the equation of C2 is

		  x2 + y2 – 12x – 8y + 27 = 0	 [4]

	 (iii)	Find the equation of the tangent to circle C2 at the point Q.	 [4]
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6	 G is the group of symmetries of an equilateral triangle, under composition of transformations.  
Its group table is

a b c d e f
a c d a b f e
b f e b a c d
c a b c d e f
d e f d c a b
e d c e f b a
f b a f e d c

	 (i)	 State the identity element.	 [1]

	 (ii)	 State whether the element a represents a reflection or a rotation. Justify your answer.	 [1]

	 (iii)	Find a subgroup of order 3	 [2]

	 The permutations
		  			   x	 y	 z 				    x	 y	 z				    x	 y	 z	
		  	 I =	 (	x	 y	 z)	 	 p =	(	x	 z	 y)	 	 q =	(	y	 x	 z	)
		  			   x	 y	 z 				    x	 y	 z				    x	 y	 z	
		  	 r =	 (	z	 y	 x)	 	 s =	 (	z	 x	 y)	 	 t =	 (	y	 z	 x	)
	 form a group H under composition.

	 (iv)	Copy and complete the group table for H.

I p q r s t
I I p q r s t
p p I t s r q
q q s I t p r
r r t s I q p
s s q r
t t r p [2]

	 (v)	 Find the period of the element s.	 [1]

	 (vi)	State one element which is self-inverse.	 [1]

	 (vii)	Show that groups G and H are isomorphic by stating clearly one possible  
isomorphism.	 [2]
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7	 The complex numbers z1 and z2 are given by z1 = √2 + √2 i  and z2 = √3 – i
–       –                    –      

	 (i)	 Find the modulus and argument of each of z1 and z2	 [6]

	 (ii)	 Plot the points representing each of z1, z2 and z1 + z2 on an Argand diagram.	 [3]

			   p
	 (iii)	Hence find the exact value of tan	24	 [5]

THIS IS THE END OF THE QUESTION PAPER
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