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INTRODUCTION 
 
This marking scheme was used by WJEC for the 2017 examination.  It was finalised after 
detailed discussion at examiners' conferences by all the examiners involved in the 
assessment.  The conference was held shortly after the paper was taken so that reference 
could be made to the full range of candidates' responses, with photocopied scripts forming 
the basis of discussion.  The aim of the conference was to ensure that the marking scheme 
was interpreted and applied in the same way by all examiners. 
 
It is hoped that this information will be of assistance to centres but it is recognised at the 
same time that, without the benefit of participation in the examiners' conference, teachers 
may have different views on certain matters of detail or interpretation. 
 
WJEC regrets that it cannot enter into any discussion or correspondence about this marking 
scheme. 
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           = 1.548...,(–0.215...)  

        θ = 0.437 

OR 

Let     2sinhθ + coshθ = rsinh(θ + ) 

                 = rsinhθcosh + rcoshθsinh 

      Equating coefficients, 

           rcosh = 2 ; rsinh = 1 

      Solving, 

            0.54930..)(  )5.0(tanh ; 3 -1  r  

      Consider 

     3 sinh(θ + ) = 2 

       θ +  = )3/2(sinh 1  (= 0.98664...) 

       θ = 0.98664 – 0.54930 = 0.437 
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tan(0.9)tanh(0.9) – 1 = – 0.0973... 

tan(1.1)tanh(1.1) – 1 = 0.572... 

The change of sign indicates a root between 0.9 
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This is less than 1 therefore convergent. 

 

Successive iterations give 

                1 

                0.9199161588 

                ... 

                etc 

The value of α is 0.938 correct to 3 decimal 

places. 
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