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INTRODUCTION 
 
This marking scheme was used by WJEC for the Summer 2016 examination.  It was 
finalised after detailed discussion at examiners' conferences by all the examiners involved in 
the assessment.  The conference was held shortly after the paper was taken so that 
reference could be made to the full range of candidates' responses, with photocopied scripts 
forming the basis of discussion.  The aim of the conference was to ensure that the marking 
scheme was interpreted and applied in the same way by all examiners. 
 
It is hoped that this information will be of assistance to centres but it is recognised at the 
same time that, without the benefit of participation in the examiners' conference, teachers 
may have different views on certain matters of detail or interpretation. 
 
WJEC regrets that it cannot enter into any discussion or correspondence about this marking 
scheme. 
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This lies outside the domain for the curve, hence 

no point at which the tangent is perpendicular to 

the initial line.            
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This pattern repeats itself every four 

differentiations so 2)0()( nf if n is a multiple of 

4 and zero otherwise.   (Therefore the only terms 

in the Maclaurin series are those for which the 

power is a multiple of 4.) 

The first three terms are 
20160
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Substituting the series, 
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                   x = 3.45 

 

Let g(x) = 36)cosh(cos12 4  xxx  

Consider g(3.445) = – 0.0507… 

               g(3.455) = 0.2312… 

The change of sign confirms that the value of the 

root is 3.45 correct to 3 significant figures. 
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Accept unsimplified expressions 
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The equation is 

        0cosh82cosh  k  

 Substituting for cosh2 , 
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If k < – 9, 72 + 8k < 0 so no real solutions. 

 

     If k =  – 8, 
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There is a repeated root when k = –9 

 

There will be only one real root if the smaller root 

of the quadratic equation in (a) < 1, ie 
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Allow k = –9 to be included here 
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Award this A1 if the 2 is missing 
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Since this is less than 1 in modulus, the sequence 
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Since this is greater than 1 in modulus, the 

sequence is divergent. 

 

Successive approximations are 

      1 

      1.127828325 

      1.100939212 

      1.107049937 

      1.105684578 

      1.105990816 

(since the sequence oscillates) the value of the 

root is 1.106 correct to three decimal places. 

       

 

 

The Newton-Raphson iteration is 
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Successive approximations are 
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The value of the root is 1.105935 correct to six 

decimal places. 
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