Laws Of Indices

LEARNING OBJECTIVES:

  • To define index and base of a number
  • To discuss the different laws of indices
  • To evaluate expressions using the laws of indices

MATH CONCEPTS

  • INDEX OF A NUMBER- The index of a number tells how many times to use the number in a multiplication. It is written as a small number to the right and above the base number. It is also known as exponent or power.
  • BASE OF A NUMBER- It is the number that gets multiplied when using an index or exponent.
  • THE THREE BASIC LAWS OF INDICES For any real number x, y, m, and n, the following rules uphold:
    • Multiplication Law/ Product Rule x^{m}\cdot x^{n}=x^{m+n}
    • Division Law/Quotient Rule x^{m}/x^{n}=\frac{x^{m}}{x^{n}}=x^{m-n}
    • Power Law/Power Rule  (x^{m})^{n}=x^{m\cdot n}
  • Other Laws:
    • x^{-n} = \frac{1}{x^{n}}
    • x^{\frac{m}{n}}=\sqrt[n]{x^{m}}
    • (xy)^{m}=x^{m}y^{m}
    • (\frac{x}{y})^{n}=\frac{x^{n}}{y^{n}}
    • x^{0}=1,\,x\neq 0

IMPORTANCE

  • Understanding the laws of indices plays an important role in manipulating and simplifying expressions involving indices.
  • Laws of indices can also be used to evaluate expressions involving indices without the use of calculators.

DISCUSSION

BASE AND INDEX OF A NUMBER

It is vital to get familiarized with the base and index of a number. This will become the foundation of learning the laws of indices. In the given example, 3 is raised to 5. Meaning, the base will be multiplied to itself five times.

If we will evaluate the given, 3 x 3 x 3 x 3 x 3 = 243.

DISCUSSION

LAWS OF INDICES 

  • Multiplication Law/ Product RuleWhen expressions with the same base (x) are multiplied, the indices (m and n) are added.

x^{m}\cdot x^{n}=x^{m+n}

        Examples: 

1) 2^{a}\cdot 2^{b}=2^{a+b}        2)  4^{\frac{1}{2}}\cdot 4^{\frac{1}{3}}=4^{\frac{1}{6}}        3) z^{5}\cdot z^{4}=z^{9}

  • Division Law/ Quotient RuleWhen expressions with the same base (x) are divided, the indices (m and n) are subtracted.

x^{m}/x^{n}=\frac{x^{m}}{x^{n}}=x^{m-n}

        Examples: 

1) 5^{3a}/5^{2b}=5^{3a-2b}                2) 10^{6}/10^{2}=10^{6-2}=10^{4}        3) y^{2a}/y^{4}=y^{2a-4}

  • Power Law/ Power RuleWhen an expression is raised to a certain index and is raised again to another index, the indices (m and n) are multiplied.

(x^{m})^{n}=x^{m\cdot n}

        Examples: 

1) (6^{5p})^{2q}=6^{5p\cdot 2q}                 2) (9^{8})^{2}=9^{8\cdot 2}=9^{16}                 3) (c^{4})^{n}=c^{4\cdot n}=c^{4n}

ILLUSTRATIVE EXAMPLES 

Find the value of the following series.

  1. (c^{2}\cdot c^{8})/c^{5}=c^{10}/c^{5}=c^{10-5}=c^{5}
  2. \frac{6^{13}}{6^{2}\cdot 6^{3}}=\frac{6^{13}}{6^{2(3)}}=\frac{6^{13}}{6^{6}}=6^{13-6}=6^{7}
  3. m^{-2}n^{3}\cdot m^{5}n^{-4}=m^{-2+5}n^{3-4}=m^{3}n^{-1}=\frac{m^{3}}{n}
  4. (p^{3}q^{5})^{3}=(p^{3(3)}q^{5(3)})=p^{9}q^{15}
  5. 3(4x^{4}y^{3})^{2}=3(4x^{4(2)}y^{3(2)})=3(4x^{8}y^{6})=12x^{8}3y^{6}
  6. \frac{rs^{2}t^{3}}{s^{-5}t^{2}}=rs^{2+5}t^{3-2}=rs^{7}t
  7. \sqrt[7]{\frac{b^{4}}{c^{-2}}}=b^{\frac{4}{7}}c^{\frac{2}{7}}
  8. \frac{a^{2}b^{\frac{1}{3}}}{a^{\frac{1}{2}}b^{3}}=a^{2-\frac{1}{2}}b^{\frac{1}{3}-3}=\frac{a\frac{3}{2}}{b^{\frac{8}{3}}}

REFERENCES: 

  1. https://www.mathsisfun.com/definitions/index-power-.html
  2. https://www.mathsisfun.com/definitions/base-numbers-.html
  3. https://mathsmadeeasy.co.uk/gcse-maths-revision/rules-indices-gcse-maths-revision-worksheets/
  4. http://www.mathcentre.ac.uk/resources/Engineering%20maths%20first%20aid%20kit/latexsource%20and%20diagrams/2_1.pdf
  5. http://www.a-levelmathstutor.com/alg-indices.php
  6. https://revisionmaths.com/advanced-level-maths-revision/pure-maths/algebra/indices