Differentiation of Trigonometric Functions

Summary

Remember these derivatives of the trigonometric functions:

  • \frac { d }{ dx } \sin { (x) } \quad =\quad \cos { (x) }
  • \frac { d }{ dx } \cos { (x) } \quad =\quad -\sin { (x) } \quad
  • \frac { d }{ dx } \tan { (x) } \quad =\quad { sec }^{ 2 }(x)
  • \frac { d }{ dx } \cot { (x) } \quad =\quad -co{ sec }^{ 2 }(x)
  • \frac { d }{ dx } \sec { (x) } \quad =\quad \sec { (x) } \tan { (x) }
  • \frac { d }{ dx } cosec(x)\quad =\quad -cosec(x)\cot { (x) }

Differentiation of sin(x) and cos(x)

To begin with, we know that differentiation is a method to find the gradient of a curve.

Rule of differentiation is if y\quad =\quad { x }^{ n }, then  \frac { dy }{ dx } \quad =\quad n{ x }^{ n\quad -\quad 1 }. However in this article we will focus entirely on differentiation of trigonometric functions.

Consider the graph of y\quad =\quad \sin { (x) } in the range 0\quad \le \quad x\quad \le \quad 2\pi . We draw tangents to the sin curve at the points where x\quad =\quad 0,\quad x\quad =\quad \frac { \pi }{ 2 } ,\quad x\quad =\quad \pi ,\quad x\quad =\quad \frac { 3\pi }{ 2 } ,\quad x\quad =\quad 2\pi radians.

x0\frac { \pi  }{ 2 } \pi \frac { 3\pi  }{ 2 } 2\pi
sin(x)010-10

We now plot the values of the gradients of these tangents and we obtain a graph of cos(x). As shown in Fig 2.

Hence, this shows that derivative of sin(x) is cos(x). It can be written as:

\frac { d }{ dx } \sin { (x) } \quad =\quad \cos { (x) } when x in radians.

Similarly, we can find that:

\frac { d }{ dx } \cos { (x) } \quad =\quad -\sin { (x) } \quad

Differentiation of tan(x)

Let’s assume  y\quad =\quad \tan { (x) } ,

y\quad =\quad \frac { \sin { (x) } }{ \cos { (x) } }      using quotient rule

\frac { dy }{ dx } \quad =\quad \frac { \cos { (x)\cos { (x) } \quad -\quad \sin { (x) } (-\sin { (x) } ) } }{ { (\cos { (x) } ) }^{ 2 } }

\frac { dy }{ dx } \quad =\quad \frac { { cos }^{ 2 }(x)\quad +\quad { sin }^{ 2 }(x) }{ { cos }^{ 2 }(x) }

\frac { dy }{ dx } \quad =\quad \frac { 1 }{ { cos }^{ 2 }(x) } \quad =\quad { sec }^{ 2 }(x)

Differentiation of sec(x)

Let’s assume:   y\quad =\quad \sec { (x) } ,      y\quad =\quad { cos }^{ -1 }(x)

\frac { dy }{ dx } \quad =\quad -1({ cos }^{ -2 }(x))(-\sin { (x) } )

\frac { dy }{ dx } \quad =\quad \frac { \sin { (x) } }{ { cos }^{ 2 }(x) } \quad =\quad (\frac { \sin { (x) } }{ \cos { (x) } } )(\frac { 1 }{ \cos { (x) } } )

\frac { d }{ dx } sec(x)\quad =\quad sec(x)tan(x)

Differentiation of cosec(x)

Assume      y\quad =\quad cosec(x)\quad =\quad \frac { 1 }{ \sin { (x) } } \quad =\quad { sin }^{ -1 }(x)

Taking the derivative:

\frac { dy }{ dx } \quad =\quad -1({ sin }^{ -2 }(x))\cos { (x) }

\frac { dy }{ dx } \quad =\quad \frac { -cos(x) }{ { sin }^{ 2 }(x) }

\frac { dy }{ dx } \quad =\quad -(\frac { \cos { (x) } }{ \sin { (x) } } )(\frac { 1 }{ \sin { (x) } } )

\frac { dy }{ dx } \quad =\quad -cot(x)cosec(x)

\frac { d }{ dx } cosec(x)\quad =\quad -cot(x)cosec(x)

Hence, to conclude derivatives of trigonometric functions are:

\frac { d }{ dx } \sin { (x) } \quad =\quad \cos { (x) } \frac { d }{ dx } \cos { (x) } \quad =\quad -\sin { (x) } \quad \frac { d }{ dx } \tan { (x) } \quad =\quad { sec }^{ 2 }(x) \frac { d }{ dx } \cot { (x) } \quad =\quad -co{ sec }^{ 2 }(x) \frac { d }{ dx } \sec { (x) } \quad =\quad \sec { (x) } \tan { (x) } \frac { d }{ dx } cosec(x)\quad =\quad -cosec(x)\cot { (x) }

Example 1

Q. Differentiate { sin }^{ 2 }(x) with respect to x

Solution:

y\quad =\quad { sin }^{ 2 }(x)

\frac { dy }{ dx } \quad =\quad 2\sin { (x) } \quad \quad \frac { d }{ dx } sin(x)

\quad =\quad 2sin(x)\quad cos(x)   use the identity \quad sin(2x)\quad =\quad 2sin(x)cos(x)

Ans:               =\quad sin(2x)