Uses Of Differentiation

Summary

  • If y = f(x) is an increasing function then  \frac { dy }{ dx } \quad >\quad 0
  • If y = f(x) is a decreasing function then  \frac { dy }{ dx } \quad <\quad 0
  • Stationary Points are obtained by solving the equation  \frac { dy }{ dx } \quad =\quad 0
  • 3 types of stationary points:

i) Maximum Point

ii) Minimum Point

iii) Point of Inflexion

Increasing Function

Refer to Fig 1, consider a point A on the curve y = f(x). A tangent is drawn at A and the gradient of the tangent at A is  \frac { dy }{ dx } .

In this situation when x increases the function f(x) also increases so  \frac { dy }{ dx } positive. Hence, it is known as an increasing function.

If y = f(x) is an increasing function then  \frac { dy }{ dx } \quad >\quad 0.

Decreasing Function

Refer to Fig 2, A tangent is drawn at A and the gradient of the tangent at A is  \frac { dy }{ dx } .

In this situation when x increases the function f(x) decreases so  \frac { dy }{ dx }   is negative. Hence, it is known as a decreasing function.

If y = f(x) is a decreasing function then  \frac { dy }{ dx } \quad <\quad 0.

Example #1

Q. Find the range of values of x such that  f\left( x \right) \quad =\quad 3{ x }^{ 2 }\quad +\quad 4x\quad -\quad 7  is an increasing function.

Solution:

y\quad =\quad 3{ x }^{ 2 }\quad +\quad 4x\quad -\quad 7

\frac { dy }{ dx } \quad =\quad 6x\quad +\quad 4

As f(x) is an increasing function hence  \frac { dy }{ dx } \quad >\quad 0.

So,

6x\quad +\quad 4\quad >\quad 0

x\quad >\quad \frac { -2 }{ 3 }       Ans

Stationary Points

Refer to Fig 3, consider a graph of y =  f(x). Notice the 4 main situations in the diagram.

i) Along AB, gradient of the curve is increasing, therefore  \frac { dy }{ dx } \quad >\quad 0 .
ii) On reaching point B, the tangent at B becomes parallel to the x axis. Hence, at B  \frac { dy }{ dx } \quad =\quad 0.
iii) After passing B, the gradient of the curve becomes negative, therefore  \frac { dy }{ dx } \quad <\quad 0 .
iv) As the curve now reaches C,  \frac { dy }{ dx }   at C is again 0.

To conclude, point B and C are special points where the tangents being parallel to the x axis,  \frac { dy }{ dx } is 0.

Stationary Points are obtained by solving the equation  \frac { dy }{ dx } \quad =\quad 0

Example #2

Q. Find the stationary values of  \quad f\left( x \right) \quad =\quad 4{ x }^{ 3 }\quad -\quad 3x\quad +\quad 12

Solution:

\quad f\left( x \right) \quad =\quad 4{ x }^{ 3 }\quad -\quad 3x\quad +\quad 12

Find \frac { dy }{ dx }

\frac { dy }{ dx } \quad =\quad f^{ ' }\left( x \right) \quad =\quad 12{ x }^{ 2 }\quad -\quad 3

We know that at stationary points  \frac { dy }{ dx } \quad =\quad 0.

Hence:

12{ x }^{ 2 }\quad -\quad 3\quad =\quad 0

{ x }^{ 2 }\quad =\quad \frac { 1 }{ 4 }

x\quad =\quad \pm \frac { 1 }{ 2 }

By substituting both values of x at  \frac { dy }{ dx } \quad =\quad 0  in f(x), we can find the stationary points.

At x\quad =\quad +\frac { 1 }{ 2 }

f\left( \frac { 1 }{ 2 } \right) \quad =\quad 4{ (\frac { 1 }{ 2 } ) }^{ 3 }\quad -\quad 3(\frac { 1 }{ 2 } )\quad +\quad 12

=\quad 11

At x\quad =\quad -\frac { 1 }{ 2 }

f\left( -\frac { 1 }{ 2 } \right) \quad =\quad 4{ (-\frac { 1 }{ 2 } ) }^{ 3 }\quad -\quad 3(-\frac { 1 }{ 2 } )\quad +\quad 12

=\quad 13

Ans:   Therefore coordinates of the stationary points are  (\frac { 1 }{ 2 } ,\quad 11)  &  (-\frac { 1 }{ 2 } ,\quad 13)

A stationary point is also called a ‘turning point’ if it is either a maximum point or minimum point.

We are now aware that a curve has a stationary point where  \frac { dy }{ dx } \quad =\quad 0.

There exist 3 types of stationary points:

1.      Maximum Point

In Fig 4 , before the stationary point (A), the gradient  \frac { dy }{ dx }   is positive and immediately after the stationary point (A),  \frac { dy }{ dx }   is negative . Hence, A is a maximum point.

2.      Minimum Point

In Fig 5 , before the stationary point (A), the gradient  \frac { dy }{ dx }   is negative and immediately after the stationary point (A),  \frac { dy }{ dx }   is positive . Hence, A is a minimum point.

3.      Point of Inflexion

In Fig 6, points A and B are neither maximum nor minimum. Although  \frac { dy }{ dx } \quad =\quad 0  at both the points, but it does not change sign when moving through A and B i.e if  \frac { dy }{ dx }   x is positive before A, it will remain positive after A as well. Similarly if  \frac { dy }{ dx }   x is negative before B, it will remain negative after B as well. Such points are called ‘Point of inflexion’.

 

To find the nature of a stationary point, we need to find the second derivative of the function and substitute the stationary points in the equation. If our answer is positive it means that its a minimum point and vice versa.

If we differentiate a function again after finding  \frac { dy }{ dx } ,  it is called a second derivative  \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } .

Remember:

\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \quad \neq \quad { (\frac { dy }{ dx } ) }^{ 2 }\quad or\quad \quad \frac { { d }^{ 3 }y }{ d{ x }^{ 3 } } \quad \neq \quad { (\frac { dy }{ dx } ) }^{ 3 }

Example #3

Q. The equation of a curve is  y\quad =\quad { (2x\quad -\quad 3) }^{ 2 }\quad -\quad 6x

i) Express  \frac { dy }{ dx }   and  \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } }   in terms of x.

ii) Find the coordinates of the two stationary points and determine the nature of each stationary point.

Solution:

i) y\quad =\quad { (2x\quad -\quad 3) }^{ 2 }\quad -\quad 6x

\frac { dy }{ dx } \quad =\quad { 3{ (2x\quad -\quad 3) }^{ 2 } }(2)\quad -\quad 6

\frac { dy }{ dx } \quad =\quad 6{ (2x\quad -\quad 3) }^{ 2 }\quad -\quad 6\quad \quad \quad \quad \quad (1)

\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \quad =\quad 6\left[ 2(2x\quad -\quad 3)(2) \right] \quad -\quad 0

\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \quad =\quad 24(2x\quad -\quad 3)\quad \quad \quad \quad \quad (2)

ii) Equate  \frac { dy }{ dx } to 0

6{ (2x\quad -\quad 3) }^{ 2 }\quad -\quad 6\quad =\quad 0

{ (2x\quad -\quad 3) }^{ 2 }\quad =\quad 1

{ 2x\quad -\quad 3 }\quad =\quad \pm \quad 1

Hence: x\quad =\quad 2,\quad 1

When: x = 2

\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \quad =\quad 24(2x\quad -\quad 3)

=\quad 24(2(2)\quad -\quad 3)

=\quad 24

Since  \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \quad >\quad 0x = 2 is a minimum point.

When: x = 1

\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \quad =\quad 24(2x\quad -\quad 3)

=\quad 24(2(1)\quad -\quad 3)

=\quad -24

Since  \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \quad <\quad 0,  x = 1 is a maximum point.