Parametric Differentiation

Summary

  • When x and y are expressed in terms of a third variable it is called a parameter.
  • To differentiate parametric equations to find derivative of y with respect to x, we use the chain rule method.
  • When the parameter in the equations is “t”, the chain rule is defined as:     \frac { dy }{ dx } =\quad \frac { dy }{ dt } \quad \times \quad \frac { dt }{ dx }

What is parameter?

We now completely understand that differentiation is the process that we use to find the gradient of a curve and it is denoted by  \frac { dy }{ dx } ,  we call it a derivative or differential coefficient of y with respect to x.

Moving forward, we know that a relation between the coordinates x and y is known as ”cartesian form”. However, there are times when it is convenient to express x and y in terms of a third variable which is called a parameter.

Suppose, the equation of a curve is given by two parametric equations. For example, two parametric equations of a circle with centre zero and radius a are given by:
x\quad =\quad acos(t)  and  y\quad =\quad asin(t)  here t is the parameter.

Chain Rule Method

Now to differentiate these parametric equations, we must understand that in each case we can’t differentiate with respect to x, hence we cannot directly find  \frac { dy }{ dx } ,  we will use the chain rule here:

  • For each of the above equations we will only be able to find  \frac { dx }{ dt } ,  and  \frac { dy }{ dt }   and then using the chain rule we find  \frac { dy }{ dx } .
  • The chain rule will be applied like this:      \frac { dy }{ dx } =\quad \frac { dy }{ dt } \quad \times \quad \frac { dt }{ dx }

Let’s do an example now to see how we carry out parametric differentiation.

Example #1

Q. Find  \frac { dy }{ dx }   when  x\quad =\quad cos(t)  and  y\quad =\quad sin(t).

Solution:

\frac { dx }{ dt } \quad =\quad -sin(t)  and  \frac { dy }{ dt } \quad =\quad cos(t)

Use the chain rule:   \frac { dy }{ dx } =\quad \frac { dy }{ dt } \quad \times \quad \frac { dt }{ dx }

We know:   \frac { dy }{ dt } \quad =\quad cos(t)

But since:   \frac { dx }{ dt } \quad =\quad -sin(t),\quad \frac { dt }{ dx } \quad =\quad \frac { -1 }{ sin(t) }

Therefore:

\frac { dy }{ dx } \quad =\quad cos(t)\quad \times \quad \frac { -1 }{ sin(t) }

\frac { dy }{ dx } \quad =\quad \frac { -cos(t) }{ sin(t) } \quad =\quad -cot(t)         Ans

Example #2

Q. Let  x\quad =\quad 4sin(t)  and  y\quad =\quad 3cos(t),  find  \frac { dy }{ dx }   at  t\quad =\quad \frac { \pi }{ 4 } .

Solution:

\frac { dx }{ dt } \quad =\quad 4cos(t)  and  \frac { dy }{ dt } \quad =\quad -3sin(t)

\frac { dy }{ dx } \quad =\quad \frac { -3sin(t) }{ 4cos(t) }

\frac { dy }{ dx } \quad =\quad \frac { -3 }{ 4 } tan(t)

Put  t\quad =\quad \frac { \pi }{ 4 }   in  \frac { dy }{ dx } .

\frac { dy }{ dx } \quad =\quad \frac { -3 }{ 4 } tan(\frac { \pi }{ 4 } )

Hence:

\frac { dy }{ dx } \quad =\quad \frac { -3 }{ 4 }              Ans

Example #3

Q. Find  \frac { dy }{ dx } when  x\quad =\quad { r }^{ 3 }\quad -\quad r  and  y\quad =\quad { 4\quad -\quad r }^{ 2 }

Solution:

Here the parameter given is r:

\frac { dx }{ dr } \quad =\quad { 3r }^{ 2 }\quad -\quad 1  and  \frac { dy }{ dr } \quad =\quad { -2r }

Now use the chain rule:  \frac { dy }{ dx } =\quad \frac { dy }{ dr } \quad \times \quad \frac { dr }{ dx }

We know:  \frac { dy }{ dr } =\quad -2r

But:  \frac { dr }{ dx } \quad =\quad \frac { 1 }{ 3{ r }^{ 2 }\quad -\quad 1 }

\frac { dy }{ dx } \quad =\quad -2r\quad \times \quad \frac { 1 }{ 3{ r }^{ 2 }\quad -\quad 1 }

\frac { dy }{ dx } \quad =\quad \frac { -2r }{ 3{ r }^{ 2 }\quad -\quad 1 }         Ans

 

Reference
  1. https://studylib.net/doc/13474624/parametric-differentiation
  2. https://slideplayer.com/slide/10093157/